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Abstract
It is conjectured that for every deterministic system there is a stochastic system
that yields the same correlation functions. We exploit this to set up a scheme
for the analytic computation of the Lyapunov exponent of a forced double-
well oscillator. The resulting expression shows that the Lyapunov exponent
has a maximum as a function of the well depth. Numerical evaluation of the
Lyapunov exponent confirms this expectation.

PACS numbers: 05.45.Gg, 05.10.Gg, 05.40.-a

In an interesting work [1, 3] on possible connections between chaotic flows and statistical
mechanics, it was argued some years ago that the Lyapunov exponent will obey a Kubo type
formula for transport coefficients. This meant that the Lyapunov exponent could be written
down as the integral over a two-time correlation function of some ‘current’. In arguing that this
Kubo relation does give the correct Lyapunov exponent, the dynamics of the random variable
had to be obtained and then the solution was used to (i) extract the Lyapunov exponent by
the standard technique of Bennetin and Galgani [4] and (ii) extract the Lyapunov exponent
from the Kubo formula [3]. The two techniques yielded the same exponent, showing the
correctness of the Kubo formula. In this Letter we want to show that an ‘equivalent’ stochastic
system [6]1, whose probability distribution is known, can be used to calculate the correlation
function in the Kubo formula and yield a Lyapunov exponent which is very close to the actual
one. This is obviously an efficient method since it obviates the necessity of solving for the
original dynamics and should be able to shed light on features of the Lyapunov exponent which
would not otherwise be apparent.

The Hamiltonian for a particle moving in a potential V (x) can be written as

H = p2

2
+ V (x). (1)

1 In a different context (the Kuramoto–Shivashinshy equation) a somewhat similar philosophy is applied in [5].
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The equation of motion for the above particle is

ẍ = −V ′(x) (2)

and is always integrable. If there is an additional time-dependent term in the Hamiltonian,
then it is possible for the system to show chaotic behaviour if the potential V (x) has
certain characteristics.

The largest Lyapunov exponent for the dynamical system would be given by

λ = lim
t→∞

d(0)→0

log ‖d(t)‖/‖d(0)‖
t

(3)

where ‖d(t)‖ is defined as

‖d(t)‖ = [�̇x2 + �x2]
1
2 (4)

and would be positive when the system is chaotic. The classical Hamiltonian, which is capable
of showing chaotic behaviour and is still a very popular model, can be written as

H = P 2

2m
+ V (x) + gx cos ωt. (5)

Since �x and �̇x are the quantities that we need, it is worthwhile to write down the equation
for �x. It is clear that

�̈x = V ′′(x)�x. (6)

Since the class of V (x) which would show chaos is characterized by the existence of at least
two equilibrium points, we write the above equation in a form which refers it to an equilibrium
point x∗,

�̈x + (V ′′(x∗) + [V ′′(x) − V ′′(x∗)])�x = 0. (7)

V ′′(x∗) is a number, in fact a positive number when V (x∗) is a minimum, and hence in the
absence of V ′′(x) − V ′′(x∗) we should have the equation of motion of an oscillator. However
we are in the fully chaotic region for x and hence V ′′(x)−V ′′(x∗) is actually a random variable
which we write as V ′′(x∗)ζ(t). Consequently �x follows a stochastic equation of motion [2]

d2�x

dτ 2
+ ω2(τ )�x = 0 (8)

where τ = [V ′′(x∗)]
1
2 t and ω2 = 1 + ζ(τ ). We can write this as

d

dτ

(
�x

�̇x

)
=
(

0 1
−ω2 0

)(
�x

�̇x

)
. (9)

For the second moments, we have

d

dτ

( 〈�x2〉
〈�̇x2〉

〈�x〉〈�̇x〉

)
= [A0 + ζ(t)B]

( 〈�x2〉
〈�̇x2〉

〈�x〉〈�̇x〉

)
(10)

where

A0 =
( 0 0 2

0 0 −2
−1 1 0

)
(11)

and

B =
( 0 0 0

0 0 −2
−1 0 0

)
. (12)
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The equation for the second moments can be rewritten as

d

dτ

( 〈�x2〉
〈�̇x2〉

〈�x〉〈�̇x〉

)
=
( 0 0 2

C3 −C2 −2 − 2C

−1 − C + C1 1 −C2

)( 〈�x2〉
〈�̇x2〉

〈�x〉〈�̇x〉

)
(13)

where

C1 =
∫ ∞

0
〈〈ζ(τ )ζ(τ − τ ′)〉〉 sin 2τ ′ dτ ′ (14)

C2 =
∫ ∞

0
〈〈ζ(τ )ζ(τ − τ ′)〉〉(1 − cos 2τ ′) dτ ′ (15)

C3 =
∫ ∞

0
〈〈ζ(τ )ζ(τ − τ ′)〉〉(1 + cos 2τ ′) dτ ′ (16)

C = 〈ζ(t)〉 (17)

〈〈ζ(τ )ζ(τ − τ ′)〉〉 = 〈ζ(τ )ζ(τ − τ ′)〉 − 〈ζ(τ )〉〈ζ(τ − τ ′)〉. (18)

In terms of the above constants the eigenvalue up to second order is

λ0 = (C3 − C2)

2
. (19)

Next we evaluate ζ(t). We specialize to the potential V (x) = ax4 − bx2.

The equilibrium fixed points are x = 0, x = ±
√

b
2a

of which x = ±
√

b
2a

are stable:

ζ(t) =
{

V ′′(x) − V ′′
(

±
√

b

2a

)}/
V ′′
(√

b

2a

)

= 12a

(
x2 − b

2a

)/
4b

= 3a

b

(
x2 − b

2a

)
. (20)

At this point, we should like to evaluate the correlation functions shown in equations (14)–(17)
by introducing an equivalent stochastic differential equation governing the dynamics of the
variable x. What dictates the choice of the system? We should like to introduce the stochastic
system in such a manner that the equilibrium probability distribution of that system is similar
to the invariant probability distribution of the chaotic system described by equation (5). The
distribution in this case corresponds to a dynamics which hops erratically between the two
minima of V (x) = ax4 − bx2. A stochastic system which has similar dynamics is the
Langevin system

ẋ = −V ′(x) + f (21)

where f is a random noise, white and Gaussian and specified by the correlator

〈f (t1)f (t2)〉 = 2εδ(t1 − t2). (22)

and ε is the amplitude of the noise correlation. The equilibrium distribution is

P(x) ∝ e−V (x)/ε (23)

and we can choose ε in such a manner that the transit time from one minimum to another
matches the transit time in the chaotic systems. The transit time for the stochastic system is
given by the Kramer formula

T = 2π√|V ′′(x∗)||V ′′(0)|e−�V/ε

= 2π

2
√

2b
eb2/4aε. (24)
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〈 〈x2(t2) x2(t1)

〈 〈x (t2) x (t1)

=

=

+

+ .....+ 

+ ..... .....

Figure 1. The diagrammatic representation of the correlation function 〈x2(t1)x(t2)〉 in the spherical
limit.

For b = 10 and a = 0.5 and the external forcing frequency ω = 6.07 (which sets the timescale
for transit in the dynamical system), we find b2

4aε
� 1.0. To find the eigenvalue λ0, we need to

evaluate

λ0 =
∫

〈〈ζ(τ ′)ζ(τ + τ ′)〉〉 cos 2τ dτ . (25)

Noting that the integral of cos 2τ is zero, we are, after straightforward algebra, left with
the result

λ0 = 9a2

b2

∫
〈〈x2(τ ′)x2(τ + τ ′)〉〉 cos 2τ dτ . (26)

The Lyapunov λ is related to λ0 by the relation λ = λ0
2 .

The dynamics ẋ = 2bx − 4ax3 + f (t) does not allow for any perturbative solution at all.
However, various nonperturbative techniques [9, 10] have been widely applied to this system
and we have used this to find

C(12) = 〈x(t1)x(t2)〉
= 〈x2〉ste

−2b|t1−t2| (27)

where

〈x2〉st � b

2a
(1 − aε/b2). (28)

We now need to relate 〈x2(t1)x
2(t2)〉 to the correlation function C(12). If the probability

distribution which is used to calculate the correlation function is Gaussian, then the correlation
function 〈x2(t1)x

2(t2)〉 = 2〈x(t1)x(t2)〉2 = 2C2
12. However, this is an immense simplification.

The probability distribution has strong non Gaussian behavior and hence the above result will
be modified. The simplest situation in which a non-perturbative result can be obtained is the
spherical limit. In this case one generalizes from the single component variable x(t) to a N

component vector xi(t), and for each i writes down the equation of motion

ẋi = 2bxi − 4a

N
x2xi + fi (29)

where x2 = ∑N
i=1 x2

i and the noise fi has no cross correlation, i.e.

〈fi(t)fj (t
′)〉 = 2εδij δ(t − t ′).

The factor N in the denominator of the second term on the right-hand side of equation (29)
ensures that the limit N → ∞ is well defined. This is the spherical limit and in the limit all
the correlation function can be related exactly to C(12), which is exhibited in equation (27).
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To relate 〈x2
i (t1)x

2
i (t2)〉 (no sum on i) to C(12), it is best to work in the frequency space.

To the lowest order the Fourier transform F(ω) of 〈x2
i (t1)x

2
i (t2)〉 is

F(ω) = 2〈x2〉2
st /N

−iω + 4b
. (30)

With the dynamics governed by equation (5) the only surviving graphs in the limit N → ∞
are shown in figure 1. The result is

F(ω) =
[

2〈x2〉2
st /N2

−iω + 4b

[
1 − 4a

〈x2〉2
st

N2

]
1

−iω + b
+

{
4a

〈x2〉2
st

N2

}2
1

(−iω + b)2
+ · · ·

]

= 2〈x2〉2
st /N2

−iω + 4b

1

1 + 4a〈x2〉2
st /N

−iω+4b

= 2〈x2〉2
st /N2

−iω + 4b + 4a
〈x2〉2

s t

N2

= 2〈x2〉2
st /N2

−iω + 4b + 4a( b
2a

)2
= 2〈x2〉2

st /N2

−iω + 4b(1 + b
4a

)
. (31)

The final result shows that the screening effect increases the relaxation rate by the factor 1+ b
4a

.
In real time, we have

〈x2(t1)x
2(t2)〉 = 2〈x2〉2

st exp

(
−4b

(
1 +

b

4a

)
(t2 − t1)

)
. (32)

We are now in a position to evaluate the Lyapunov exponents. We find

λ = 1
2 λ0

= 9

2

a2

b2

∫
〈x2(t1)x

2(t2)〉 cos 2τ dτ

= 9
a2

b2
〈x2〉2

st

∫
e−2

√
b(1+b/4a)τ cos 2τ dτ

= 9
a2

b2
〈x2〉2

st

√
b(1 + b/4a)

2[1 + b(1 + b/4a)2]

= 9

8

(
1 − aε

b2

)2
√

b(1 + b/4a)

[1 + b(1 + b/4a)2]
(33)

which is the central result of the paper.
We expect aε/b2 to be small and from equation (24) estimate it to be about 0.1. In

our method of setting up an equivalent random system, the strength of the sinusoidal term
does not play a role so long as the strength is above the thresold for the onset of chaos. The
determination of λ from the algorithm of Benettin et al is fairly independent of g. The driven
system with V = ax4 −bx2 was extensively studied by Lin and Ballentine [12] and using their
parameters a = 0.5 and b = 10 one obtains the chaotic behaviour of the system represented
by equation (5) depending on the starting point. Equation (33) gives λ = 0.048. The value of
λ found from the algorithm of Bennetin and Galgani [4] ranges from 0.0395 to 0.0449. The
agreement is impressive. We find from equation (33) that λ ∝ 1

b3/2 for large b. For very large

b, the system is expected to be nonchaotic (the wells are very deep). For b → 0, λ ∝ b
1
2 and

this implies that λ as a function of b should exibit a maximum. To test this we carried out a
numerical calculation of λ based on the work of Bennetin et al for the actual system for various
values of b. The results are shown in table 1 and the Lyapunov index does have a peak as a
function of b. We thus establish that the equivalent stochastic system gives a good account of
the correlation function of the deterministic system exhibiting chaos.
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Table 1. The Lyapunov index λ for the chaotic trajectories of ẍ = 2bx − 4ax3 + gx cos ωt as a
function of b and g.

b g λ

5 3 0.010 6
6 3 0.003 6
6.5 3 0.256 0
7 3.5 0.003 6
7.5 3.5 0.029 0
8 4.5 0.000 1
8.5 5 0.002 0
9 6 0.013 0

10 6 0.007 0
10 9 0.041 3
10 10 0.039 5
10 10.5 0.041 8
10 11 0.043 4
10 11.5 0.044 9
10 12 0.040 3
13 12 0.047 0
13.5 12 0.045 8
14 12 0.047 1
15 9 −0.000 06
15 12 0.014 0
16 12 0.001 7
17 12 −0.001 6

Recently the system represented by equation (5) has been studied in connection with
decoherence and entropy production in chaotic systems [8] and stochastic resonance in a
bistable system subject to multiplicative and additive noise [7,13]. Further investigation of the
latter from a quantum mechanical point of view is currently in progress.

The work was partially supported by CSIR, India.
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